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SUMMARY .
Conditionally conjugate prior distributions are shown to provide flexible -
families for modelling prior information in the comparison of normal means,
even in the presence of variance heterogeneity. The technique is illustrated
using a well known data set.
Key words : Gibbs sampler, Behrens-Fisher problem, Exponential
families, Inconsistent prior information. )

1. Introduction

It is not uncommon to be faced with a problem of comparing means for
"independent normal samples. Indeed the problem is almost the canonical
introductory problem in statistical methods textbooks. Under the name analysis
of variance, one may ask whether or not all the means are equal. Multiple
comparisons, estimate contrasts, etc. are performed. And we routinely assume
variance homogeneity, to avoid Behrens-Fisher type “problems”. Fiducial
probabilists were less concerned about variance homogeneity but their viewpoint
(despite the weight and influence of R.A. Fisher) never really was accepted
by mainstream applied statisticians. Bayesian analysts were undaunted by
variance heterogeneity. It just meant, more parameters in the model, more
complicated priors and posteriors and a larger computer account in order to
process, at least approximately, the data. The current paper accepts this Bayesian
thesis. It may be argued however, on Bayesian philosophical grounds, that it
is disappointing to resort over frequently to the use of diffuse, vague or
non-informative priors. Means are compared because we suspect they might
have some simplifying structure; so we do know something about them prior
to experimentation.

Informative priors should be used as much as possible. The usual
informative priors can be viewed as posteriors obtained from a vague prior
utilizing an imaginary (or, rarely, real) data set. It is argued in Arnold, Castillo
and Sarabia [1] and earlier in Arnold and Press [2] that such priors force a
possibly unnatural dependence structure on the joint prior distribution of
parameters in the model. Indeed there is no reason to accept as a dictum that
all available prior information is necessarily well summarized by results of an
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imaginary prior experiment of the same type as that to be now undertaken. A
more flexible family of informative priors is called for. In the case of a single
normal sample, Amold, Castillo and Sarabia [1] argued for the use of what
may be called conditionally conjugate priors. The present paper advocates the
use of such priors in more general comparison of means problems. There is
never a nutritious and edible free lunch. You must pay for increased flexibility
by eliciting subjective values of more hyperparameters than is usually the case.
The elicitation is however feasible, thanks to easily available powerful, cheap
and efficient computer programs and assuming a reasonably patient informed
expert or experts who will provide a priori “bits” information about the model
parameters.

2. The Data

Imagine that k independent samples from k normal populations are
available. Thus we have independent random variables
{X;:i=1,2,...,k,j=1,2,...,0; ) where

X; ~ N, 0d) (¢AY)
Based on the data X we wish to make inferences about the mean vector
p=(uy,..., ). The variances (0},i=1,2,...,k) are unknown and not
assumed to be equal. Convenient sufficient statistics are then

Xi==+ % Xy i=1L2....k 22)
o
and

n.

T =,
S‘2 n.—1 Z (XIJ_Xl)Z’ 1= 1,2,...,]{ (2_3)
i .

i=1
All are independent and have (well) known distributions.

X; ~N@,o0l/n),i=1,2,... .k (2.4)

2
1

ﬂi—'l

S} ~T|n -1, ,i=1,2,...,k (2.5)

Note that in our notation for gamma distributions the second parameter is a
scale parameter i.e. if X ~T (a, B),

fx () = [x*"' ¢ )/ [T (@) B°), x>0
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3. Conditionally Conjugate Priors

We need to quantify our prior knowledge and beliefs about the 2k
parameters of the model (2.1). Since we -are concerned with suspected
relationships among the ;’s it is not likely that a joint prior with independent
marginals will appropriately describe our prior beliefs. It is- comforting that
such an option is included as a special case of the class of priors to be
subsequently described, so if you or your expert insist on independent priors,
such prior beliefs can be readily accommodated.

Our likelihood function forms a 2k-parameter exponential family of
distributions. We seek a flexible family of informative priors for the 2k
parameters that will lead to reasonably tractable posterior distributions. The
conditionally conjugate approach introduced in Arnold, Castillo and Sarabia [1]
seems to provide a convenient solution to this problem. We will describe the
approach for a general m parameter exponential family likelihood and then
return. to treat in detail the case of interest involving k mean parameters

B My, ...,y and k precision parameters 8, ,8,.. .. .8, where §, =.l/oi2.

Suppose that our data X has as its family of likelihoods a m parameter
exponential family with parameter vector 8. Introduce the notation ;) to denote
6 with the ith coordinate deleted, i=1,2,...,m. If 9(1) were known (i.e. if
all »ej’s except the first were known) then a p, parameter exponential family
of conjugate priors for 8, will exist of the form '

Py
fL(0)) =1 (91) exp ( 2 Ty le ®p) (3.1)
j=1
Analogously, for each i, if 8, were known, a conjugate prior family for
8, will ‘be a p,; parameter exponential family of the form

P; -
£, (8) = 1;8)exp (Y, M;T;;(6)) ~ (32)
j=1
It is reasonable to consider then a joint prior for 8 such that for each i,
the conditional distribution of 8, given 9(1) belongs to the appropriate exponential
family, i.e. (3.2). The resulting joint density for 8 (see e.g. Arnold and Strauss
3]) is of the form :

Pa Pm

f@:[ Ir; (ei)jlexl) XX S n { T q4; (91):l
i=1 0 =1

jl=0 2=0 jm=
3.3)
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where for convenience we have introduced constant functions
9 (0) = 1,i=1,2,...,m. The given family of priors thus has
[T | (p;+ 1)1 -1 hyperparameters (5o, , is determined as a function of the
other §’s so that the density integrates to 1). The family (3.3) will be a conjugate
family for the data and the posterior distribution will retain_the conditional
structure present in the prior. Thus a posteriori, as well as a priori, 6; given
8¢y will have a distribution in the p; parameter exponential family (3.2). As
long as we can simulate observations from the densities (3.2) we will, via the
Gibbs sampler, be able to. simulate observations from the Joint density (3.3).
The major drawback to the use of (3.3) is the high number of hyper- parameters
involved. Note that (3.3) includes as special cases the priors with independent
marginals for 6),8,,..., 0y, where 6; has a density in the family (3.2) for
each i. It also includes the standard conjugate prior formulation beginning with
£(8) = 1 and computing a posterior corresponding to an imaginary sample.

In the normal means example we have a likelihood of the form

kN

= V5 5 2
vebf i e Feow] o

In this setting the conjugate prior for 1, assuming all other parameters
(1qyand §) were known, would be normal. The conjugate prior for §,, if
81y and u were known, would be gamma. Similarly each p;,i=2,...,k, would

have a normal conjugate prior if all,other parameters were known and each
8; would have a gamma conjugate prior if all other parameters were known.

We are thus led to consider a joint (conditionally conjugate) prior for (u, §)
such that for each i, p; given pg and § is normal and, for each i,d; given

§(i)-and U is gamma. The resulting joint prior density will be of the form

;3

=0j,=0

2 2

fw=(8,...8) exp Y 3 ...

2
j|=0j2=0 ."k:.OJ.,

1 2
2 C ‘
) %1’[.” g5, (W) TI- gy (By)J (3.5)
J, =0 i=1 =1
where Qo () = 1
Qi (1) = W

G () = 1?
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and
yoBp) =1
Q1 G = log ¥y
@y Gp) = 8

There are thus 3% _ 1 hyper-parameters (the ¢; i ’s) in this prior (the

constant ¢g ¢ 18 determined by the other C’s to ensure that the density integrates
to 1). The traditional informative prior for this problem has most of these
3% _1 hyperparameters set equal to zero. The only hyperparameters given
non-zero values are those 4k hyperparameters which are affected by the data.
The traditional prior is thus conjugate but severely restricted in its ability to
match prior beliefs. To elicit appropriate values for ‘the array of 3% -1
hyperparameters, We propose to request the informed expert to provide values
for prior conditional means and precisions of each p; given a spectrum of

specific values of p; and § and of each §; given a spectrum specific values
of 8 and L. These, in a manner parallel to that described in Arnold, Castillo

and Sarabia [1] for the case k=1, yield a collection of linear relations that
should hold among the hyperparameters. Typically no solution exists, since our
expert is not infallible and will usually give inconstant a priori values for
conditional moments. Choose hyperparameters to be minimally discrepant from
the given information in the sense of being a least squares. solution. As
mentioned earlier, only 4k of these parameters will have different values in
the posterior distribution from those values held in the prior distributions.

We are currently developing a computer program which will accept elicited
conditional moments as inputs and output the best choice of hyperparameters
for the conditionally conjugate prior (3.5). At the moment our implementation
is limited to the case of two populations (i.e. k = 2). This will be illustrated
in Section 4. In the more general case (k > 2), assuming that appropriate prior
hyperparameters can be obtained and that 4k of them can be updated using
the data to obtain posterior hyperparameters, we propose using the Gibbs
sampler to generate realizations (g(k), §°"), k=1,2,...,N, from the posterior

distribution, after discarding the initial iterations. One can then study the
approximate posterior distribution of E‘i‘= 1 (-n 2 in order to decide whether
there is evidence for differences among the p;’s etc. ‘ )

4. An Example Involving Two Populations

Our data set is amuch analysed data set described in Snedecor and Cochran
([5], p. 118), beséd on a 1940 Ph.D. Thesis of Charlotte Young, and reproduced
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in Table 1. The goal is to compare basal metabolism of college women under
two different sleep regimes.

Table 1. Basal metabolism of 26 college women
(Calories per square meter per hour)

7 or More hours of sleep 6 or Less hours of sleep

1. 353 9. 333 1. 325 7. 34.6
2. 359 10. 336 2. 34.0 8. 335
3. 37.2 11. 37.9 3. 344 9. 33.6
4. 33.0 12. 35.6 4. 31.8 10. 315
S. 31.9 13. 29.0 S. 35.0 11. 33.8
6. 33.7 14. 33.7 6. 34.6
7. 360 15 35.7
8. 35.0 EXU- = 516.8 ) EX2j = 369.3

n) = 15, X, = 34.45 cal /sq.m./hr. n, = 11, X, = 33.57 cal./sq.m./hr.

We wish to specify a conditionally conjugate joint prior for
(11, 12, 8y, 87), utilize the data in Table 1 to obtain the corresponding (still
conditionally conjugate) posterior for (1}, 1y, 8,,8,) and then we wish to

consider the approximate posterior distribution of the difference between means
v A W, — 1. In addition we will look at the approximate posterior distribution

of £ AS,/ 8, to verify whether we are indeed in a Behrens-Fisher setting,
ie., a setting in which & # 1. Our conditionally conjugate prior family of

joint densities for (i, py, §;,8,) is of the following form (cf. equation (3.5)). .

F (12 81,87) o (818" exp [cyo00 1y + Cor00 Mz + Coo10log 5,
+Copo 1088y + .+ Cpppy 1 13 6, 8, ] (4.1)

involving 3*-1 =80 hyperparameters. Only the 8 hyperparameters
€0010+ €0001+ C0020» €0002: €1020- €102 2020 a0 Coyq, Will be changed from prior
to posterior by the likelihood of the data set in Table 1. The classical Bayesian
analysis of this data set would give non-zero values to some or all of these
8 hyperparameters and set the remaining 72 equal to 0. We have the additional
flexibility provided by the 80 hyperparameters family.

We illustrate to some extent this flexibility by analysing the metabolism
data using 3 prior specification paradigms, all of which are encompassed by
the family (4.1) of priors. The three examples are : (i) Diffuse prior information

A
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(all ¢’s set equal to zero in (4.1)). (i) Independent conjugate priors for each
parameter (the only non-zero c’s in (4.1) are
1000+ €0100» €0010> €0001> 2000+ €0200+ €0020 and Cgoqp) and (iii) A classical
analysis that assumes that only the hyperparameters that will be affected by
the data are non-zero (i.e. Coior Coool» 00200 Coo02 C10200 Cot02» 2020 2nd

Cozoz).

() Diffuse prior. Here no prior eliciation is required. The prior is of the

form

f(E,é) oc (8182)-1 if'81,82 > Oand—oo < ul,u2<°°

The posterior distribution becomes : .

n,

4.2)

ny

n
H&&mmx@%wﬁp%bﬁﬁzbﬁf&%zﬁj

ny
1
—83 E X3+ 1y 8y

“j=1

n

j=1

n
Y xpj by X Xgim

ny

=1

j=1

1 n,
—z‘uzl 8, “7”%82

(4.3)
- The posterior conditional distributions to be used in the Gibbs sampler
are :
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Using the data from Table. 1, the non-zero posterior hyperparameters are

Cooto = 1572 ' ‘
Coo0r = 1172
Cooz0 = —8937.4 _
" Coopz = — 6206 —.
Cio20 = 516.8
Coro2 = 369.3
Co020 = —15/2
Cozoz = —11/2
Using these posterior hyperparameters, simulated approximate posterior |
distributions of v = u; — -, and of § = §,/§, were obtained using the Gibbs

sampler with 800 iterations discarding the first 300. To display the results of
these and subsequent simulations we have used kernel density estimates to
obtain smooth curves.

We have used the kernel estimation expression ' . J

1 w 1
f(x) = EE T exp (= (x-x)*/ (20%)

where h = 1.06 %

in the symmetric case and h =09 %
n

in the non-symmetric case, as suggested in Silverman [4). The resulting
approximate posterior densities for v=, -, and £=§,/8, are shown in

- Figures 1 and 2.

The corresponding approximate posterior means and variances are

E (»)=0.910
Var () = 0.591
E® = 0372

Var (§) = 0.096
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) 1 2 3

Figure 1. Diffuse priors: Simulated density of 1) — 7 using the Gibbs sampler with 500
replications and 300 starting runs

2t

1.5¢

1t

0.5¢
0.5 1 1.5 /\2 2.5

Figure 2. Diffuse priors: Simulated density of 8, / &3 using the Gibbs sampler with 500
replications and 300 starting runs




328 - JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

(i)  Independent priors for each parameter. In this case the prior distribution
is

FQ,8) = (8,8,)"" exp (C100011 + Copool} + Co100H2 + Cozpol;

* C0010 108 8; + Conz0 8, + Cogg 108 8, + Cogs 8, )

(4.9
where the hyperparameters must satisfy the constraints
C2000 < 0; C020<0; oo <0; 20002 < 0;
Coo10 > 0; Co001 > 0; C0020 < 0; cl020 < 43020C0020;
Coo02 < 0; Co102 < 402020002

Assuming that marginal moments will be assessed we will use the
following expressions relating hyperparameters in (4.2) to the assessed moments.

_ E(“-])

“1000 = Var (u,)
, 1
__Ew)

Conoo—m

1
€0200= = 7y )

_EG)
Co020 =~ Var (81)

_[E@P
0010~ Var 57

_ E®)
€0002 = = Var (s,)

_[EG)P
€000l = Var (5,)
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Suppose that elicited prior moments were

E(u) =35

Var () =100
E(u) =30

Var () =100
E@®,) =02
Var (6,)=1.0
E@®,; =11
Var (8,)=2.0

The corresponding prior values of non-zero hyperparameters in (4.1) are
shown in Table 2.
* Table2. Independent case : Prior and posterior values for

the hyperparameters

Parameter Prior Posterior
1000 7120 7/20
2000 —1/290 -1/200
0100 3/10 3/10
€00 -1/200 -1/200
0010 0.04 7.54
0020 0.2 —8937.6
0001 0.605 6.105
o002 -0.55 ~6206.6
1020 0 516.8
Camo 0 -7.5
o102 0 369.3
Co22 0 -5.5

The conditional distributions used in the Gibbs sampler are :

w18 ~N| p= C1000 *+ 1020 01 02_;_ 1 :
P 2 (c3000 * €2020 81’ 2 (000 * €2020 81)
Co100 * Co102 82 2 1
15, ~N| = N
H21% [u 2 (Con00 * Co202 82) 2 (c200 + Co202 52)]
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81 iy ~ T (cooi0: = [Coo0 + Croz0k1 + Caga0ht] 17 1)

83 1y ~ T (cooors = [Con0z + Cor02 M2 + Conoz M5 17 ")

S i 3 ;

Figure 3. Independent priors: Simulated density of py — p using the Gibbs sampler with
500 replications and 300 starting runs

0.25 0.5 0.75 1 1.25 1.5 1.75

Figure 4. Independent priors: Simulated density of 8; / 8, using the Gibbs sampler with
500 replications and 300 starting runs
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The resulting smoothed approximate posterior densities for v=p, —pn, and
€ = §,/3, are shown in Figures 3 and 4. The corresponding approximate posterior
means and variances are

E (v) = 0.892
Var(z) = 0.608
E (§)=0344
Var () = 0.066

(iii) Classical analysis. 8 hyperparameters are assumed to be non-zero in the
prior (4.1) (namely those that will be affected by the data). The prior distribution
in the classical case is ' -‘

£(, 8) =< (5,8, " exp (Coo10 108 &) + Cooor 108 82 + Conz0 81 + Coo02 B2
+ Cloz0 M 81 + Coron M2 83+ Ca020 M1 81+ Conoa M3 82)  (45)
where the hyperparameters must satisfy the constraints '
o020 < 05 Coaz < O; Coo10 > 05 cooo1 > O
Coozo < 05 ctozo < 42020 Co020° _ Coooz < O
Cor02 < 40202 002

The prior (4.5) has the following conditional distributions

Clo20 2 1
w/d _ N|lp=s -5 —:;0 -5
L ( 29020 20202051_]

Co102 . 2 1
/18 _Nlp=-————;0=-5—%"
Ha’ o2 { 20002 2C0202 52]
& Iy ~ T (cgo10s — [Co020 * C1020 M1 + C2020 wirh

Sl o T (Coom?‘[c0002+00102112+0020211§]-1)

One may use conditional 'moments to assess appropriate values - for the
hyperparameters. The values of the hyperparameters will be related to the
assessed conditional moments as follows :

5. E(u,18;)
Cl02001 = ——_Var(ullﬁl)
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1 |

C20209; = hZVar(uIIS,) | |
5. = E(u, 13y !
Co102 %2 = Var (1, 18,)

1 .
co20282_—2V;31r(112|82) {

\ . 2 A E(SZ'u'l)
Co020 * C1020 M1 + Coop0 M) = = Var (§; I u,)
CEG Iy
€010 = Var 3, Ty
‘ E(3, )
Cooaz + Co102 Ma + Coz0p My = — Var (8,1, )

_E@ I -
0001 = Var (5, 1 1)

" We assume that the expert supplies the following information:
E(u 18, = 0.22) = 34.4
Var (u; 18, = 0.22) = 100.
E(u,15,=080)=33.6
Var (1, 18,=0.80)=90
E@,Ip;=35) =030
Var (8, I, =35) = 0.02
E(5,n,=32) = 0.80
Var (5, I p, =32) = 0.04

The resulting prior and posterior values of non-zero hyperparameiers are )
shown in Table 3. :

The results of the simulation using the Gibbs sampler are shown in
Figures 5 and 6, which show the smoothed histograms for the posterior
distribution of w=p, ~u, and E=8,/8,. The corresponding approximate {
posterior means and variances are . B
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Table 3. Prior and posterior values of non-zero hyperparameters for
the classical case

Parameter Prior Posterior
0010 45 12
Co001 16 21.5
0020 —41.89 -8979.31
Co002 -27.82 -6233.9
1020 1.564 518.36
o102 ‘ 0.467 369.8
S0 -0.0227 -~7.523
Snn —0.00694 -5.507
E(v) = 08521
Var (v) = 0.4684
E (E) = 0.3131
Var €) = 0.0139

It is clear from the Figures' 5, 6 that, for this data set, u —u, is slightly
positive (more sleep associated with higher metabolism) although the treatment:
difference might well be considered to be not significant (95% intervals for

‘ all three analyses would include v=0). It is also clear, since §, /5, appears

1 1 2

Figure 5. Classical priors: Simulated density of pj — p using the Gibbs sampler with 500
replications and 300 starting runs
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Figure 6. Classical priors: Simulated density of 81 / 82 using the Gibbs sampler with 500

to be clearly less than 1, that indeed we were right in not assuming equal
variances. We were indeed confronted by a Behrens-Fisher situation.

m
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